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The most common photochemical sources of carbenes are
diazirines and diazo compounds5 but such nitrogenous precur-
sors can form the same products from either the carbenes or
the excited states of the precursors, albeit in different ratios.6

Consequently, the observed product ratios are not necessarily
indicative of carbene chemistry.6 Dialkyldiazo compounds
themselves can be generated by direct7 (300 nm) or sensitized8

photolysis of oxadiazolines. At 25°C, the diazoalkanes are
thermally and photochemically (300 nm) fairly stable, affording
azines slowly together with only traces of coproducts associated
with intramolecular rearrangement of corresponding dialkyl-
carbenes.
We are pleased to report that laser flash photolysis (LFP,

308 nm) of 3,4-diaza-2-methoxy-2-methyl-1-oxa[4.5]spirooct-
3-ene (1a) in the presence of pyridine gave the pyridinium ylide
of carbene4 (λmax) 350-360 nm), permitting estimates of the
lifetime of 4. Moreover, while 300 nm steady state (SS)

irradiation (Rayonet) of1b9 gave primarily diazocyclobutane
(2),10 a little of the corresponding azine, and traces of alkenes,11

two-color photolysis (SS, 250 and 300 nm) of1b gave a mixture
of cyclobutene (CB) and methylenecyclopropane (MC).12 In
the presence of tetramethylethylene (TME), carbene4 was
trapped as cycloadduct5.13 Together, the LFP and SS results
permitted estimates of rate constants for the 1,2-rearrangements
of 4 and the determination of the product ratio (CB/MC) from
carbene and excited state sources.
LFP (308 nm) of either1a or 1b in the presence of pyridine

gives an intense spectrum of the pyridinium ylide of4. The
similarity of transient spectra and lifetime from an oxadiazoline
and a diazirine was established by LFP of7 (308 nm) and8
(351 nm).14-17 Presumably a two-photon or a multiphoton

process is responsible for the generation of4 from 1a in the
laser beam. Analysis of the data14,19 from different pyridine
concentrations gave the lifetimes (τ) of 4 in CF2ClCFCl2,
cyclohexane, or cyclohexane-d12, as 4-20 ns ((20%) and, in
acetonitrile, 0.4-2 ns ((20%), assuming18 that kpyr ) 1-5 ×
109 M-1 s-1. Stern-Volmer (LFP) experiments14 reveal that
carbene4 reacts with TME and pyridine with the same rate
constant within experimental error. Asτ is identical in C6H12

and C6D12, we conclude that the lifetime of4 in alkane solvent
is controlled by intramolecular processes and that the sum of
the rate constants for 1,2-H and 1,2-C migrations,kH + kC )
0.5- 2.5× 108 s-1 at ambient temperature.
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Simultaneous steady state photolysis of1b, with 250 and 300
nm wavelengths at ambient temperature, gave CB and MC
which is consistent with the original report20 of thermal
decomposition of the sodium salt of cyclobutanone tosylhydra-
zone and with the results of dehalogenation ofgem-dihalo-
cyclobutanes.21 Two-color photolysis of1b in neat TME gave
4,4,5,5-tetramethyl[2.3]spirohexane (5)13 (Scheme 1). Diazo-
cyclobutane is known to undergo [3+ 2] cycloaddition reactions
with alkenes to give pyrazolines10awhich can subsequently lose
N2 thermally10bor photochemically.10a Therefore precursor1b
was photolyzed in neat TME with 300 nm light alone to
determine whether5 was the indirect result of [3+ 2]
cycloaddition of 2 to TME or the direct result of carbene
trapping. The resulting mixtures, analyzed by1H-NMR and
GC-MS, revealed that5was not formed with 300 nm light alone,
excluding diazo compound2 as the source of adduct5.
Photolyses of1b (250 and 300 nm) in cyclohexane solutions

with different concentrations of TME22 showed that yields of
CB and MC decreased as a function of increasing [TME] and
then leveled off, indicating that part of the rearrangement
reactions cannot be quenched by a carbene trap. Yields of5
showed a similar saturation, at a maximum near 21% relative
to CB and MC, with increasing [TME]. On the basis of the
observed ratio of MC/CB (5.5:1) in cyclohexane, upper limits
at∼25 °C would bekH ) 4 × 107 s-1 andkC ) 2 × 108 s-1.
Corresponding lower limits would bekH ) 8× 106 s-1 andkC
) 4 × 107 s-1. However, the ratio of 1,2-H and 1,2-C
migrations was also observed to change as a function of [TME].
The data suggest thatca. 21% of the observed products are the
result of the intramolecular rearrangement of4 and that the
remainder results from migrations in the excited state (3) of
diazo precursor2.23 Since TME atg3 M captured all of4, the
limiting ratio CB/MC reflects the partitioning of3between 1,2-C
and 1,2-H migration. At [TME]) 0, when the ratio reflects a
composite of excited state and carbene rearrangements, the value
wasca.5.5 in cyclohexane, while at high [TME] it was 3.6. In
order to change the ratio from 3.6 (excited state alone) to 5.5
(composite) with a 21% contribution from4, it is clear that most
or all of 4must rearrange to MC.24 Given that the lifetime (τ)
of 4 was measured as 4-20 ns in cyclohexane-d12 (above),
based18 on kpyr ) 1-5× 109 M-1 s-1 , upper and lower limits

of the absolute rate constant for 1,2-C migration would then be
2.5× 108 s-1 and 5.0× 107 s-1, at∼25 °C, respectively.
Two-color photolyses of1b in acetonitrile gave changes in

MC/CB ratios, as a function of [TME], analogous to those
obtained in cyclohexane solvent. Thus, for4, solvent effects
on 1,2-H and 1,2-C migrations are similar. Yields of5 as a
function of [TME] increased more rapidly in cyclohexane
compared with acetonitrile solutions (Figure 1). Double
reciprocal plots14,19,25(Figure 1, inset) gave the ratio intercept/
slope which is equal tokTMEτ for quenching. For cyclohexane,
the ratio was 5.2 M-1 meaning thatkTME ) 0.26-1.3× 109

M-1 s-1 at∼25 °C (τ ) 4-20 ns). For acetonitrile, the ratio
was 1.3 M-1 indicating that4 has a much shorter lifetime in
that solvent (0.3-1 ns). Both results are consistent with the
data obtained by quenching with pyridine (above). More facile
1,2-H and 1,2-C migrations in a polar solvent indicates that
corresponding transition states from4 are polar. 1,2-Hydrogen
migration in carbenes appears to be accelerated in other cases
by polar solvents.26 1,2-Carbon migration is special for4, which
rearranges through a dipolar, nonclassical transition structure
according to Schoeller27 and Sulzbach et al.28

We are currently investigating other carbenes and other alkene
traps in order to determine product distributions and pathways
to product formation.
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Scheme 1

Figure 1. Percent yield of5 vs TME concentration in cyclohexane-
d12 (O), in acetonitrile-d3 (b), and in neat TME (9). Curve fitting of
the data in cyclohexane solutions is shown by the solid line and in
acetonitrile solutions by the dashed line. The plot shows a leveling off
at ∼21% indicating that an unquenchable reaction is occurring. The
inset shows double reciprocal plots for quenching of4 by TME in
cyclohexane-d12 (O) and in acetonitrile-d3 (b).14,19The slope/intercept
ratio giveskqτ in each solvent.
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